skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Baglivo, Ilaria"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Parsek, Matthew (Ed.)
    ABSTRACT Histone-like nucleoid structuring (H-NS) and H-NS-like proteins serve as global gene silencers and work with antagonistic transcriptional activators (counter-silencers) to properly coordinate the expression of virulence genes in pathogenic bacteria. InBrucella, MucR has been proposed as a novel H-NS-like gene silencer, but direct experimental evidence is lacking. Here, we show that MucR serves as an H-NS-like silencer of theBrucella abortusgenes encoding the polar autotransporter adhesins BtaE and BmaC, the c-di-GMP-specific phosphodiesterase BpdB, and the quorum-sensing regulator BabR. We also demonstrate that the MarR-type transcriptional activator MdrA can displace MucR from thebtaEpromoter, supporting the existence of MucR counter-silencers inBrucella. Moreover, our chromatin immunoprecipitation (ChIP)-seq analysis identified 546 MucR enrichment peaks along the genome, including in the promoters of the genes encoding the Type IV secretion machinery and effectors and the quorum-sensing regulator VjbR. Importantly, MucR ChIP-seq peaks overlap with the previously described binding sites for the transcriptional activators VjbR, BvrR, and CtrA suggesting that these regulators serve as MucR counter-silencers and work in concert with MucR to coordinate virulence gene expression inBrucella. In addition, using chromosome conformation capture (Hi-C), we show that like H-NS inEscherichia coli, MucR alters the global structure of theBrucellanucleoid. Finally, a copy of theE. coli hnsrescues the distinctive growth defect and elevatedbtaEexpression of aB. abortus mucRmutant. Together, these findings solidify the role of MucR as a novel type of H-NS-like protein and suggest that MucR’s gene-silencing properties play a key role in virulence inBrucella. IMPORTANCEHistone-like nucleoid structuring (H-NS) and H-NS-like proteins coordinate host-associated behaviors in many pathogenic bacteria, often through forming silencer/counter-silencer pairs with signal-responsive transcriptional activators to tightly control gene expression.Brucellaand related bacteria do not encode H-NS or homologs of known H-NS-like proteins, and it is unclear if they have other proteins that perform analogous functions during pathogenesis. In this work, we provide compelling evidence for the role of MucR as a novel H-NS-like protein inBrucella. We show that MucR possesses many of the known functions attributed to H-NS and H-NS-like proteins, including the formation of silencer/counter-silencer pairs to control virulence gene expression and global structuring of the nucleoid. These results uncover a new role for MucR as a nucleoid structuring protein and support the importance of temporal control of gene expression inBrucellaand related bacteria. 
    more » « less
  2. Abstract MucR belongs to a large protein family whose members regulate the expression of virulence and symbiosis genes in α‐proteobacteria species. This protein and its homologs were initially studied as classical transcriptional regulators mostly involved in repression of target genes by binding their promoters. Very recent studies have led to the classification of MucR as a new type of Histone‐like Nucleoid Structuring (H‐NS) protein. Thus this review is an effort to put together a complete and unifying story demonstrating how genetic and biochemical findings on MucR suggested that this protein is not a classical transcriptional regulator, but functions as a novel type of H‐NS‐like protein, which binds AT‐rich regions of genomic DNA and regulates gene expression. 
    more » « less